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I. INTRODUCTION

The magnitude and distribution of the stresses in the second stage
turbine diaphragm and shroud are presenﬁed in this report. These stresses
were obtained by using the finite element method of analysis.

. T
Essentially, the method consists of idealizing an elastic body as a

3
§

series of dlscreet elements interconnected at nodal points. The stiffness
of each element is defined by its geometry.and material properties; loads
(mechanical and/or thermal) specified at the nodal points are used in
solving the equilibrium equations. A general treatwent of finlte element
techniques and applications is contained in Reference (1). Specifically, k>y
the theory and associated digital computer programs used in this report !
are explained in detail in References (2) and (3). )
The analyses are in accord with the dlaphragm-shroud component
configuration shown in AGC Drawings }26&196—1 and 1264198-1. The general
configuration and details of the "floating" vanes are shown in Figures 1
through 4.
The following loading cases, acting separately, were considered:
1. Thermal loading as indicated in Figures 8 through 11
2. Normal pressure of 75 psi.
One quadrant (with appropriate boundary conditions) of the diaphragm
. and shroud was considered. This is admissible since for all practical
purposes double symmetry exists both in regard to geometry and distribution

of thermal and mechanical loading.



IT SUMMARY OF RESULTS
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Maximum elastic stresses (50,000 psi) occur in the 2nd stage
nozzle diaphragm at 16 seconds after turbine start-up due mainly to
the large thermal gradients through the thickness of the diaphragm.

The subsequent maximum stress level of 10,000 psi due to the pressure
difference of 75 psi across the diaphragm is essentially constant
during the remainder of an operational cycle (until turbine shut-down ).

As shown in Appendix A, an extremely conservative estimate of
cyclic strain shows an expected life of 2700 cycles. More realistically
though, the maximum elastic stress level dﬁe to the thermal gradient
at 16 seconds can be considered as a thermal shéck ocecurring in an
operational cycle of several hundred hours. Since the maximum elastic
stress level is less than twice the yield strength, the stress-strain
cycle will shake-down to elastic action (no further repeated plastic
flow) fter the first cycle.

Based on maximum turbine performance requirements of 100 cycles
(one cycle = start-up and shut-down operation), the 2nd stage nozzle
diaphragm is structurally adequate to sustain the designated environ-

mental loading conditions.



ITTI. METHOD OF ANALYSIS

For both load cases (thermal and pressure) the analysis consists of
determining the stresses in the diaphragm portion of the component by
calculating equivalent structural members (elements) to represent the
mechanical and thermal characteristics of the shroud and the hub. Although
the effects of the shroud and hub on the diaphragm stresses can be represented
quite accurately, the resulting stresses in these equivalent elements themselves
are not sufficient. Thus stresses in the shround and hub components are
determined by considering an axisymmetric.(rotationally symmetric) cross-
section.

A.  THERMAL LOADING

The time at which the maximum stresses will occur was determined
from a study of the temperature differences through the thickness of the
diaphragm as a function of time. As can be seen from,Figure T, the maximum
temperature differences and thus the meximum stresses, will occur at 16
seconds.

The stress distribution due to the radial, circumferential, and
axial temperature gradients is composed of two parts:

1. In-plane stresses which are caused by movements of adjacent
elements parallel to a wmedian plane (mid-thickness).

2, Thermal bending stresses which are caused by a temperature

.difference through the thickness of an element.

The in-plane stresses are obtained from a generalized plane-stress
finite element computer program using the temperature at mid-thickness
(Figure 10) as the thermal loading.

The lateral bending stresses are obtained from a finite element
computer program for plate bending using the thermal moment, MT (see
page 30) caused by the temperature difference through the thickness of

each element (Figure 9).



1. Plane Stress Analysis

To account for the in-plane effects of the shroud, an
equivalent ring forming an integral part of the diaphragm was substituted
for the shroud.

This equivalence was based on the following:

a. The width of the ring measured in the radial
direction equals that of the shroud in plan view.

b. The radial displacemegt of the ring when subject to
an akisymmetric radial load equals that of the shroud when subject to the
same loading. This condition leads to the establishment of the thickness
of the ring as shown on page 26.

Ce The radial displacement of £he ring at its Jjuncture
with the diaphragm equals that of the shroud at the same location with
the shroud subject to the thermal distribution remote from the window
as shown in Figure 11. This condition leads to an equivalent coefficient
of linear expansion for the ring with the latter subject to a uniform
temperature as shown on page 26.

de The region of the shroud bridging the cut-out (window)
in the diaphragm is considered to be effectively 0.50 inches thick subject
to a uniform temperature of 6ASOF. as shown in Figure 11(c). This is
because the lower flange of the actual shroud is rendered ineffective due
~to the close pitch of a series of slots td hold the vanes in position
(see Figure 3).

A detailed grid with numbered elements and nodal points
is presented in Figure 6. The following boundary conditions were employed
at the proper boundary nodal points as shown on page 22:

S Along the edges of symmefry, the tangential displace-

ments and shears vanish.

b, Along all free edges, the normal and shear stresses

vanish.

5



To account for the variation in thickness of the elements
shown in Figure 5, an equivalent modulus was used. - As indicated in
Table I, the equivalent modulus is defined as the product of the actual
modulus of elasticity pertinent to a particular temperature and a
corresponding actual thickness. It should be observed that the variation
with temperature of the modulus of elasticity and coefficient of linear
expansion were taken into account. 'These variations are presented in
Figure 13, page 23.

2. Bending Analysis

Since the plate bending computer program does account for
changes in thickness of the elements, the thickness of each element is
input directly into the program.

The equivalent shroud ring for the bending case is based
on the following:

& The width of the ring measured in the radial direction
equals that of the shroud in plane view.

b.  The moment of inertia (about the center line of the
diaphragm) of the ring is the same as that of the actual shroud cross-
section. The calculations for the eguivalent thickness of the ring with
and without the vane cut-outs is shown on page 33.

c. Thermal moment on the shroud ring is input as zero.
That this is the actual condition is evidenced by the thermsl displacement
pattern of the shroud shown in Figure 1l4. The rotation along the inner
radius of the shroud ring where the diaphragm and the shroud are integral
is essentially zero. The nodal point and element grid is the same as
that used in the plane stress analysis (Figure 6).

The following boundary conditions were applied:

Qe MAMong the edges of symmetry the normal shears,

tangential rotations, and twisting moments vanish.

6



b Along all other boundaries, the normal and twisting
moments, and the normal shear vanish.

Ce Nodal point 13 is used as a reference for displacements
by setting the normal displacement, w, equal to zero.

3. Axisymmetric Analysis

To obtain the stress distribution in the shroud and hub,
an axisymmetric finite element solution was employed on a cross-section
where the shroud and diaphragm form an inpegral part as shown in Figure 18.
It shbuld be noted that in this representation, each element is actually a
ring, and the geometry and loading have rotational symmetry. The temperature
difference through the diephragm is taken to be 300°F, and the temperatures
in the hub and shroud are shown in Figure 25.

B, PRESSURE LOADING
The normal pressure loading (case 2) solution was obtained by
two separaste analyses.
1. Diaphragm stresses were calculated by using the plate

bending program with the same finite element grid (Figure 6) and the
same equivalent shroud as shown on page 33.

For the pressure analysis, the following boundary
conditions were applied:

a. Along the edges of symmetry, the normal shears,
. tangential rotations, and twisting moments'vanish.

be. Along the outer radius of the shroud at nodal points
where ears are located (see page 35) the normal and twisting moments vanish,
and the normal displacement is zero (simple support conditions).

Ce Along the nodal points defining the window boundary,
the normal load transferred to the diaphragm and shroud by the inserted
vanes is input as a shear load as shown on pages 36 and 37.

d. Along the inner radius and other non-loaded free



edges, the normal and twisting moments, and the normal shear vanish.-

2. Hub and shroud stresses were obtained from an axisymmetric.
solution using the finite element grid shown in Figure 18. Pressure
loading of 75 psi was applied and nodal point 169 was fixed in the
axial direction as a displacement reference.

c. DISCUSSION OF RESULTS

1. Thermal Loading

Maximum principle stresses for both the thermal in-plane
and thermal bending conditions are.plotted.in contour form in Figures 21
and 22 respectively. Based on the large bending stresses, the criticél
region is delineated as section A=A in Figure 23, and the individual
components of the stresses are superimposed with respect to compression
on the upstream face to obtain the maximum principle stress in the
diaphragm of 46 ksi (compression).

From the axisymmetric solution the maximum thermal
stresses in the shroud and hub regions are 50 ksi (tension) and 30 ksi
(compression) respectively as shown in Figure 25.

Maximum normal displacement, .0135 inches in the upstream
direction, occurs at the inner radius (hub) as shown in Figure 2Lb.

Maximum radial displacement of the shroud due to the net
effect of radial growth and rotation is 0.016 inches as shown in Figure 26.

2. Pressure loading

Maximum principle stresses for the bending condition
produced by the pressure loading are plotted in contour form in Figure 27.
It should be noted that the stresses indicated will be compression onAthe
upstream face and tension on the downstream face. Maximum stress of

10.0 ksi occurs in the diaphragm below the window area.



From the results of the axisymmetric pressure solution
presented in Figure 29, the maximum shroud and hub stresses are 4 ksi
(compression) and 6.0 ksi (tension) respectively.

Normal displacements are shown in Figure 28, and the
maximum, «005 inches in the downstream direction, occurs below the

window at the inmer radius (hub).
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PEROFPERTIES FOR ELEMENT THICKNESSES

BASED omn S-8l¢

EQUIVALENT VALUE = ACTUAL VALUE x THICKNESS

MATERIAL ACTUAL :“ EQUIVALENT
MUMEER % TEMP | THICKMESS £ ':ly Z . = y
°F | IN¢HES | PSIxi167C |psicio73| PSI107¢ |Psivio™
qoo0 30.5 9./5
B Siia :
g0 | 93° T 2z0 8.40
400 30,5 3.66
2 . 0. /ZO e e o :
§oo z28.0 3.36
400 30,5 /1.0
3 0.360
8oo 36 28.0 10.1
4oo 30.5 15.2
0.500 :
© oo 5 Z28.0 14.0
- - [A
4% S0 f‘,— /5.4:/0 P51
X =7.72x10"° iNfinfop

* EQUIVALENT SHRoUD RING (SEE PAGE )

¥ sic floufE 5 FoR LocATion OF MATERIALS
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Aries) = (k)

P (2.7975)°(1- 0.15)
E(.145)

4¢. p
E

MAINTAINING THE RADIAL DISPLACEMENTS AND

PRESSURES  oF THE ACTLAL AND EQUIVALENT
SHKROVDS

Fas) = Presy = 1000 psi

2.5x107" = 46x107 g

3
E= dexio” _ 18.4x0°PSI  EQUALENT E
2.5%10

THERMAL DISPLACEMENT  OF FREE-BoDY SHROUD

FOR AN EQUIVALENT SHRouD (DISK)
OF COoMSTANT TEMPERATURE

Un (es) [@ IvvER RADIVS] = 2.725 x Ic
R T, = 560-80 = 480 °F
AND Ay iasy = O-0102 I

-2 _ ‘ ‘
X = Jrserige) = IT2XIS jufufr EQUIVALENT X
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n=
MXy= O

B.c.’S JoPUT AT EACH NODAL oN
BoUNBOARIES , -
B.C.s v TERMS oOF A REFERENCE n,s AxXES

PR FREE €D4E ;| Mz=0  Mg=0, &,<0
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TH ICKMNESS &OF pOIsK

SINCE THE THEPMAL DEFLECTION [FATIERLN
OF THE SHRovp (TEMP ConviTioN KEMOTE
FROM T/ Winoow HREA ) SHOWS
ESSENTIALLY A ZERPO SLOPE ALONG THE
INNER RADIUS OF THE SHpRwp RiNG (WHERE
THE DIsiIK 1S AN INTEGRAL PART OF THE
STRUCTLRE ) THE, TIHERMAL — BENMNOING
CASE 1S RUM ForR NoO THEFMAL BENDING
MOMENT ON THE SHKOUD,

THERMAL MOMENTS ABE NPUT on EACH
ELEMENT 057'55;2/\/1//\JED FRM  THE [ollon)/nNG
72
= [ ExTzdz £ K
- 7/ ® XELEMENT
V4 L Lj? — 3
v
Z,

L‘}J‘}k/f NCOAL PoINTS

FOR A LINEAR GRADIENT
hZ
i, = - Ex[ 75 (2T)]

wHeRE AT =(UPSTREAM Te mP -
DOWN STREAM TEMP), °F
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£E=z29x10% psi
X = 7.7 »10°¢ INJINJoF

_29027) -
mT-—--TZ——AT = 18.6 AT

THE FoLLowirdG TABLE 15 CLoNSTRULTED 7O
COMNVERT THE ATS FRomM THE (ONTOUE
PLoT 1N FIGURE 9 7o  miyp (THERMAL MoMENT)

s
AT h=0.30 | h-0.3¢0
/130 ~217
/160 -267 )
zZoo | -33¢ |
225 - 3850 L
250 -427 _
300 ~-500 -720
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1A
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APPENDIX A

STRUCTURAL EVALUATION

Meximum elastic stress (50,000 psi) in the nozzle diaphragm
occurs at 16 secoﬁds after startup as a result of the thermal loading
" condition. The subsequent stress level (l0,000 psi) is essentially
constant during the remainder of an operational cycle due to the
pressure loading condition.

Since the yield strength of S-816 is 38,000 psi, the diaphragm
will undergo plastic deformation.

" This appendix evaluates the damaging effect of the plastic
flow on the basis of low cycle fatigue criteria in terms of A) a
conservative value of total strain and B) a more realistic shake-

down action.
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A. CYeies-To. FAILURE , Ny , _BASED ON

CONSERVATIVE VALUE OF CYCLIL STEAIN RANGE

UTILIZING UNIVERSAL SLOPES EQUATION (REF.5)

WITHoUT REGARD Jo THE GEOMETEIC

CONFIGURATION ANL TEMPERATURE DISTRIBUTION
OF THE FNO STAGE NozelE DIAPHRAGM, ASSUME
THAT THE MoST SEVERE STRAIN /?AN&E/Aé)
OCCVRS DUE To COMPLETE KESTRAINT OF
SoME ARBITRARY ELEMENT SUBJECTED

TJo 7THE MAXimMuM TEMPERATURE RISE AT 6
SECOrDS .

A€ ppy = X AT

AT 16 SES
Tmay = T20°F
7;IMI?,:ENW‘ = §o /'Z
X = 7,75 =10"° m/n/F

AémAx = 7:75"/0-‘ (7?0‘50)
= 4.95x )03 IN/IN

CYcLic LIFE Ny, 15 DETERMINED FRoM
THE UNIVERSAL SLopPES EQUATION (REF. 5)

-0./2 0.6 -0.6
a6 = 25T g L DN (1)
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WHERE
A& = ToTAL STRAIN RANGE
(Ecrasric * é/’/.Asnc) y /N/HJ
Mg = CYCLES To FAILURE

= ULTIMATE TENSILE STRENGTH, FPS]

i

Ter
E = MoDULUS OF ELASTICITY , PSI
D

= DLETLITY = L (2] wHERE

RA 1S FERCENT FEOUCTIoN OF
ABEA MEASLRED FRReM TENSILE TEST

Fork S 816 AT 720 °F

(Z_ = //c?/ooo Fsl
£ = 28%/0‘/95/
RA = 21 Js

_ /00 )\ _ -
D = w(m—o__zj- (n(l.2¢65) = 0.235
AND EQUATION (1) BECOMES
o.¢ -0.6

3.5///.5’)x/04 -0.12
= , .23
Aé 28~ Jo ¢ A/f + (0 5) Ajf

1475 <107 N %" 4 0,42 NTT

b

I

= /'475,/0—2[/\,{'0:/2.* ZglgN;-O.é] ________

EQUATIoN (2) 15 RoTTED 1IN Figure A-1
AND FOR Aéppy = 4.95%107 N1 N

Ny = 27000 CYCLES
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AclcoRpinG To HIGH TEMPERATURE FATIGUE
JEST DATA STUDIED BY MANSON (KEF. &),
AN ESTIMATE ©F THE LOWER BouUND OF LIFE
WAS FounD To BE /27 Nf.

USING THIS AS A CRITELA Fof THE v STALE

NOZZLE DIAPHRAGM THE ESTIMATED LIFE
(CYCLES To FAILLRE) 15 27700 .

B, PeeDiCcTion oF ACTUAL CYZLIC - BEHAVIOR

SINCE THE TURBINE 1S DESIGNED To OPERATE
FOR SEVERAL MHIUNDRED HOLRS PEF CYCLE
(CYCLE 1S DEFINED AS ONE COMPLETE START-UP
AND SHUT DowN OPERATION) THE MAXIMUM
ELASTIC THERMAL STRESS (T = 50,000 Fs
AT 7= /b SECONDS) |

CAN BE CONSIDERED AS A THERMAL
SHoCK ; THE SUBSEQUENT STRESS LEVEL
OF 10,000 PSI (DUE To PRESSURE LOADING)
KEMAINS CoNSTANT THROUGHOLT THE REMAINDER
OF THE CYLLE AS SHowN BEtow IN Fid.A-2.

g

\n’ 50

V‘ -

,‘5‘5’ do \__ THERMAL SHock OFPERATING TIME
=» AT 16 SECS FOR ONE CYCLE
§' g 20 0
T /o

. Time, Hou.lés
FIGURE A-2 MAXIMUM TURBINE STRESSE S
OURING ONE OFPERATIONAL CYCLE
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1. THERMAL SiocK
SINCE THE MAXIMUM CALCOLATED ELASTIC
THERMAL STRESS (50,000 FS) COMPEESS/ON)
1S LESS THAN 2x YIELD STRESS ([ Ty = 38,000 PS/)
THIS CALCULATED STRESS WILL "SHAKE-Down) "
TOo ARELY ELASTIC AcCTiod AFTER THE FIRST
CYCLE .. 'SHAKE- Down " AcTion 15 DESCRIBED
AS FOLLowS !

CONSIDER THE QUOTER FIBER of THE

SHRoUD BEING STRAINED EBY THE THERMAL
BENDING AcTioN of THE DIAFPHEAGM

T - S0 KSI (Tension)

- 270 °F DisTorTIoNn DUE
\ T~ 7o THERMAL
| r—j —~ </ BENO1nG

v
\ Vo go /
v ¥ /
57 & 77 /
- 66 /
50 - N

(7;]401 A/ -D

(a) O;Ax‘{ 20:/ ’%F;Z/E /b) O-;nAx 2 Zo—j

FIGURE A-3 STRAIN HISTORY BEYoND  YIELD
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SUBJECT 2 ND STAGE NoZZLE DIAPHRALM

IF THE MAXIMOM CALCULATED ELASTIC STEESS
EXCEEDS THE YIELD OF THE MATERIAL | THIS
ELASTIC STRESS WILL oF COURSE NEYER

BE ATTAINED. THE STRAIN WILL INCREASE
ALoNG THE LINE A-B A3 SHowWN N
FI4URE A-3(a). AS THE TEMPERATLRE LRADIENT
THROUGH THE DIAPHRAGM BECOMES LESS
SEVEIQE THE STRESS AT THE OUTER FI1BER oF
THE Sm@w CHANGES To LOMPRESSIon (B-C )
WHEN THE STRUCTLRE REACHES EQUILIERILM
TEMPERATURE , THERE 15 A KRESIDUAL LoMPRES-
SION STRESS AS SHowN AT FoinT €. AlL
SUBSEQUENT CYCLES PRODUCE ELASTIC
STRAINING ALONG LINE B-C . THUS THE

FIPST CYCLE PPODVLES YIELDING THHT

"SHAKES DowN" To ELASTIc ALTion.

IF, HOWEVEL, THE MAXIMUM ELASTIC
S T/&’ESS /5 GEEAxée THAN TWICE THE YIELD,
AS SHOWN IN FIGURE A-3(b), THE STRAIN
FROGEESSES ALONG LINE OADE AND
YIELDS IN COoMPRESSIon To POINT F,

ALl SUBSEQUENT CYCLES PRoOUCE PLASTIC
STRAIN FRomM FD o EF.

DETAILED EXPLANATION of THE ZxTgi-ld
CRITERIA AND SUBSEQRUENT SHAKE- DOWN
1S GIVEN IN FEFEFENCES (5) Anbp (7)



